

DeltaSpot

Resistance welding gun

Dear Reader

Introduction

Thank you for choosing Fronius - and congratulations on your new, technically highgrade Fronius product! This instruction manual will help you get to know your new machine. Read the manual carefully and you will soon be familiar with all the many great features of your new Fronius product. This really is the best way to get the most out of all the advantages that your machine has to offer.

Please also take special note of the safety rules - and observe them! In this way, you will help to ensure more safety at your product location. And of course, if you treat your product carefully, this definitely helps to prolong its enduring quality and reliability - things which are both essential prerequisites for getting outstanding results.

Safety rules

operating instructions for all system components.

The operating instructions must always be at hand wherever the device is being used. In addition to the operating instructions, generally applicable and local regulations regarding accident prevention and environmental protection must be made available and observed.

General remarks

(continued)

All safety and danger notices on the device

- must be kept in a legible state
- must not be damaged/marked
- must not be removed
- must not be covered, pasted or painted over.

For the location of the safety and danger notices on the device, refer to the section headed "General remarks" in the operating instructions for the device.

Before switching on the device, remove any faults that could compromise safety.

Your personal safety is at stake!

Utilisation in accordance with "intended purpose"

The device is to be used exclusively for its intended purpose.

The device is intended exclusively for the welding process described in the rating plate.

Utilisation for any other purpose, or in any other manner, shall be deemed to be "not in accordance with the intended purpose". The manufacturer shall not be liable for any damage resulting from such improper use.

Utilisation in accordance with the "intended purpose" also comprises

- reading all operating instructions carefully and following them thoroughly
- studying and obeying all safety and danger notices carefully
- performing all stipulated inspection and servicing work.

The device must not be used for the following applications:

- thawing out pipes
- charging batteries/accumulators
- starting engines

The device is designed for use in industry and the workshop. The manufacturer accepts no responsibility for any damage caused through use in living quarters.

The manufacturer likewise accepts no liability for inadequate or incorrect results.

Environmental conditions

Operation and/or storage of the device outside the stipulated area will be deemed as "not in accordance with the intended purpose." The manufacturer shall not be liable for any damage resulting from such improper use.

Surrounding temperature:

- during operation: -10 °C to + 40 °C (14 °F to 104 °F)
- for transport and storage: 25 °C to + 55 °C (-13 °F to 131 °F)

Relative humidity:

- up to 50 % at 40 °C (104 °F)
- up to 90 % at 20 °C (68 °F)

Ambient air: free from dust, acids, corrosive gases and substances, etc.

For use at altitudes above sea level: up to 2000 m (6500 ft)

The operator undertakes to allow only such people to work with the device who:

- are familiar with the fundamental instructions regarding safety and accident prevention, and have been instructed how to use the device
- have read and understood the "Safety rules" section and warning notices in these operating instructions, and then signed them to confirm this
 - are trained to produce the required results.

Checks must be carried out at regular intervals to ensure that operators are working in a safety-conscious manner.

Obligations of personnel

Before using the device, all persons instructed to do so undertake to: follow the basic instructions regarding safety at work and accident prevention

read the "Safety rules" section and warning notices in these operating instructions, and sign them to confirm that they have understood them and will follow them.

Before leaving the work area, ensure that no-one or nothing can come to any harm in your absence.

Protecting yourself and others

flying sparks, hot pieces of metal flying around

Anyone involved with welding exposes themself to numerous risks e.g.:

hazardous electromagnetic fields, which risk the lives of those using cardiac pacemakers

risk of electrocution from mains current and welding current

greater noise pollution

harmful welding smoke and gases

Anyone working on the workpiece whilst welding is taking place must wear suitable protective clothing with the following properties:

- flame-resistant -
- insulating and dry
- covers the whole body, is undamaged and in good condition
- Safety helmet
- trousers with no turn-ups

Protective clothing refers to a variety of different items. Operators should

Protecting yourself and others (continued)

مربر مربر protect eyes and face from UV rays, heat and sparks with regulation protective visor with filter.

wear regulation protective goggles with side protection behind the safety visor.

- wear solid footwear that provides insulation even in wet conditions
- protect the hands with suitable gloves (electrically insulated and providing protection against heat).

Insulated ear protectors should be worn to reduce the harmful effects of noise and to prevent injury.

Keep all persons, especially children, out of the working area while any devices are in operation or welding is in progress. If, however, there are people in the vicinity.

- make them aware of all the dangers (risk of dazzling by arc, injury from sparks, inhaling welding smoke, noise, possible danger from mains or cutting current, etc),
- provide suitable protective equipment or
- erect suitable safety screens/curtains.

Danger from toxic gases and vapours

The smoke produced during welding contains harmful gases and vapours.

This smoke contains substances which may, under certain circumstances, cause birth defects or cancer.

Keep face away from welding smoke and gases.

Smoke and hazardous gases,

- must not be breathed in
- must be extracted from the working area using appropriate methods.

Make sure the area is well ventilated.

Otherwise, a protective mask with air supply must be worn.

If there is any doubt about whether the extraction system is powerful enough, then the measured toxic emission values should be compared with the permissible limit values.

The following components are responsible, amongst other things, for the welding smoke's degree of toxicity:

- Metals used for the workpiece
- Coating of the process tapes
- Coatings of the materials
- Cleaners, degreasers etc.

The relevant material safety data sheets and manufacturer's specifications for the listed components should therefore be studied carefully.

Flammable fumes (e.g. solvent fumes) should be kept away from the direct welding process.

Danger from flying sparks

Flying sparks may cause fires or explosions.

Never weld close to flammable materials.

Flammable materials must be at least 11 metres (35 ft) away from the welding process, or alternatively covered with a checked cover.

A suitable, tested fire extinguisher must be available and ready for use.

Sparks and pieces of hot metal may also get into adjacent areas through small gaps or openings. Take appropriate precautions to prevent any danger of injury or fire.

Welding must not be performed in areas that are subject to fire or explosion or near sealed tanks, vessels or pipes unless these have been prepared in accordance with the relevant national and international standards.

Do not carry out welding on containers which are being or have been used to store gases, propellants, mineral oils or similar products. Residues pose an explosive hazard.

Risks from mains current and welding current

An electric shock can be fatal. Every electric shock is potentially life threatening

Do not touch live parts either inside or outside the device.

Make sure that you and others are protected with an adequately insulated, dry temporary backing or cover for the earth or ground potential. This backing or cover must extend over the entire area between the body and the earth or ground potential.

All cables and leads must be complete, undamaged, insulated and adequately dimensioned. Loose connections, scorched, damaged or inadequately dimensioned cables and leads must be repaired/replaced immediately.

Have the mains and device supply checked regularly by a qualified electrician to ensure the PE conductors are functioning properly.

The device must only be operated on a mains supply with a PE conductor and a socket with an earth contact.

If the device is operated on a mains without a PE conductor and in a socket without an earth contact, this will be deemed to be gross negligence. The manufacturer shall not be liable for any damage resulting from such improper use.

If necessary, provide an adequate earth connection for the workpiece.

Switch off unused devices.

Wear a safety harness if working at great heights.

Before working on the device, switch it off and disconnect it from the mains supply.

Attach a clearly legible and easy-to-understand warning sign to the device to prevent anyone from reconnecting it to the mains and switching it on again.

After opening the device:

- discharge all components that are electrically charged
- ensure that all components in the device are de-energised.

If work on live parts cannot be avoided, appoint a second person to switch off the main switch at the right moment.

Meandering welding flows

If the following instructions are ignored, meandering welding flows can develop with the following consequences:

- Fire hazard
- Overheating of parts connected to the workpiece
- Irreparable damage to P.E. conductors
- Damage to device and other electrical equipment

EMC measures

Warning, electromagnetic field Electromagnetic fields may pose as yet unknown risks to health.

It is the operator's responsibility to ensure that no electromagnetic interference occurs in electrical and electronic devices.

If electromagnetic interference is detected, the operator is obliged to take action to rectify the situation.

Check for possible problems, and check and evaluate neighbouring devices' resistance to interference according to national and international requirements:

- safety components
- power, signal and data transfer lines
- computer and telecommunications devices
- measuring and calibrating devices
- the health of neighbouring persons

Precautions against EMC problems:

- a) Mains supply
- if electromagnetic interference arises despite correct mains connection, additional measures are necessary (e.g. use a suitable line filter).
- b) Welding leads
- should be as short as possible
- allow them to run closely together
- keep them far from other leads
- c) Potential equalisation

EMC measures (continued)

- d) Earthing the workpiece
- If necessary, establish earth connection using suitable capacitors.
- e) Screening, if necessary
- screen off other devices nearby
- screen off entire welding installation

Prohibited to persons with pacemakers: The strong magnetic fields generated by resistance welding will interfere with the function of pacemakers. This can have serious health consequences for the affected person. Persons with pacemakers must not remain in the immediate vicinity of welding operations.

R

g) Prohibited to persons with metal implants: Persons with metal implants may not work with a resistance welding device and must not remain in the vicinity when welding is being carried out.

You should not be carrying magnetic or electronic data carriers: Magnetic electronic data carriers can be damaged by the magnetic fields generated by resistance welding.

i)

You should not be carrying watches or metal parts: You should not be carrying watches or metal parts: Watches can be damaged when operating resistance welding devices.

Specific hazardous areas Keep hands, hair, clothing and tools away from moving parts, for example:

- Cogs
- Rollers
- Shafts
- Arms

Do not reach into rotating drive parts

Danger of crushing

Do not place hands or other body parts between the welding electrodes

Danger of shearing

Wear safety gauntlets when handling sharp edged objects.

Covers and side panels may only be opened/removed while maintenance or repair work is being carried out.

During operation

- ensure that all covers are closed and all side panels are fitted properly.
- Keep all covers and side panels closed.

Specific hazardous areas (continued)

Never touch the workpiece, electrodes or process tape during or after welding - risk of burns.

Welding residues can jump off cooling work pieces. The specified protective equipment must therefore also be worn when reworking workpieces, and steps must be taken to ensure that other people are also adequately protected.

Welding electrodes, process tape and other parts with a high operating temperature must be allowed to cool down before handling.

Special provisions apply in areas at risk of fire or explosion - observe relevant national and international regulations.

Danger of scalding from escaping steam. Switch off cooling unit before detaching water feed or return lines.

Use only suitable load-carrying equipment when transporting devices by crane.

- Hook chains and/or ropes onto the suspension points provided on the load-carrying equipment.
- Chains/ropes must be at the smallest angle possible to the vertical.

Safety measures at the installation location and during transport

A device that topples over can easily kill someone. Place the device on a solid, level surface.

Special regulations apply in rooms at risk of fire or explosion - observe relevant national and international requirements.

Use internal directives and checks to ensure that the workplace environment is always clean and clearly laid out.

Only set up and operate the device in accordance with the degree of protection shown on the rating plate.

When setting up the device, ensure there is a gap of 0.5 m (1.6 ft.) all round so that cooling air can enter and exit unhindered.

When transporting the device, observe the relevant national and local guidelines and accident prevention regulations. This applies especially to guidelines regarding the risks arising during transportation.

Before transporting the device, allow coolant to drain completely and detach components.

After transporting the device, and before commissioning, you MUST carry out a visual inspection to check whether it has been damaged in any way. Any damage must be repaired by trained service personnel before commissioning takes place.

Safety measures in normal mode

Only operate the device when all protection devices are fully functional. If the protection devices are not fully functional, there is a risk of

- injury or death to the operator or a third party,
- damage to the device and other material assets belonging to the operator,
- inefficient operation of the device.

Any safety devices that are not functioning properly must be repaired before switching on the device.

Never bypass or disable protection devices.

Before switching on the device, ensure that no one is likely to be endangered.

- Check the device at least once a week for obvious damage and proper functioning of safety devices.
- Use only appropriate coolant. Note the information provided by the manufacturer of the cooling system
- If damage results from using a different coolant the manufacturer accepts no liability. In addition, all warranty claims are forfeited.
- Check the coolant level before you start to weld while the system is still cool.

Maintenance and repair

It is impossible to guarantee that bought-in parts are designed and manufactured to meet the demands made on them, or that they satisfy safety requirements. Use only original replacement and wearing parts (also applies to standard parts).

Do not carry out any modifications, alterations, etc. without the manufacturer's consent.

Components that are not in perfect condition must be changed immediately.

When ordering, please give the exact designation and part number as shown in the spare parts list, as well as the serial number of your device.

Carrying out a safety inspection

The operator is obliged to arrange a safety inspection of the device at least once every 12 months.

A safety inspection must be carried out by a qualified electrician

- after any changes are made
- after any additional parts are installed and after any conversions
- after repair, care and maintenance
- at least every twelve months.

For safety inspections, follow the appropriate national and international standards and directives.

Further details on safety inspections can be obtained from your service centre. They will provide you on request with any documents you may require.

Disposal

Do not dispose of this device with normal domestic waste! To comply with the European Directive 2002/96/EC on Waste Electrical and Electronic Equipment and its implementation as national law, electrical equipment that has reached the end of its life must be collected separately and returned to an approved recycling facility Any device that you no longer require must be returned to our agent, or find out about the approved collection and recycling facilities in your area.

Ignoring this European Directive may have potentially adverse affects on the environment and your health!

Safety

Devices with the CE mark satisfy the fundamental requirements of the low-voltage and electromagnetic compatibility directive.

Devices with the CSA test mark satisfy the requirements of the relevant standards in Canada and the USA.

Data protection

The user is responsible for the safekeeping of any changes made to the factory settings. The manufacturer accepts no liability for any deleted personal settings.

Copyright

Copyright of these operating instructions remains with the manufacturer.

The text and illustrations are all technically correct at the time of going to print. Subject to change without notice. The contents of the operating instructions shall not provide the basis for any claims whatever on the part of the purchaser. We are grateful for any suggestions for improvement and for drawing our attention to any errors in these instructions.

Contents

General remarks	3
Principie	3 2
Areas of utilisation	ວ ເ
Scope of supply	3
Information for dimensioning the welding plant	4
System components	6
General remarks	6
Overview of system components	/
Deila Control connections	8
Controls and connections	8
General remarks	8
DeltaControl controls	8
Welding transformer connections	10
Weiding gun connections	11 10
Delta Remoto control	IZ
Delta Remote Control	14
	15
Before commissioning	17
General remarks	17
Utilisation in accordance with "intended purpose"	1/
Machine set-up regulations	17
Mains connection	17 18
Transformer PE conductor connection	10
	10
Commissioning	19
General remarks	19
Connecting DeltaControl	19
Connecting to cooling water supply	20 20
Threading up process tape	20
Move to reference point	21
Sheet thickness correction	23
	20
DeltaSpot resistance spot welding	25
General remarks	25
Holder adjustment	20 26
Influence of the process tane on the welding process	20
Initiative of the process tape on the weiding process	21
Holder control / Fronius Xplorer	28
General remarks	28
System overview	28
Collibrating wolding dunc	29
Overview of ontions	31 31
Program ontions	37
Status options	33
Diagnosis view	34
Creating wolding perometers in program aditat	05
Opening program editor	30 25
Symbols used in program editor	30 25
	55

Creating current/force profile	36
Editing current/force profiles	36
Exiting program editor	36
Program presettings	37
Signal description	. 38
General remarks	38
Description of signal inputs	38
Description of signal outputs	39
Data in process image, inputs	39
Data in process image, outputs	40
Signal waveform	41
Move to reference point	41
Start welding with external position specification	41
External position check	42
Reset error	42
Deplace wearing parts	10
Coporal romarka	43
Instructions for storing and assembling process tapes	43
Loading new process tape	43
Adjusting process tape brake	46
Replacing electrodes	46
Adjusting holder arms	48
	49
General remarks	49
Description of error signals	49
Description of warning signals	50
	52
Care, maintenance and disposal	53
General remarks	53
Every start-up	53
Every time you change an electrode	53
Disposal	53
Technical Data	54
Special voltages	54
TR-Unit	54
DeltaSpot welding gun	55
Spare parts lists	

Fronius worldwide

General remarks

PrincipleThe DeltaSpot resistance spot welding system is a revolutionary system in spot welding
technology. The newly developed system with continuous process tapes
allows you to welded steel, galvanised sheet and aluminium and to mix materials such
as steel plate with aluminium. The process tapes protect the electrodes and the materi-
als to be joined and prevent spattering.

The continuous advance of the process tape enables spot welds of equally high quality to be produced throughout several shifts.

The result is previously unmatched precision in the welding process, exact quality control and maximum service life for the electrodes.

Device concept

Fig.1 X-welding gun

This new resistance welding system features outstanding flexibility and is well able to cope with challenging jobs. This reason is thanks to the well thought out design of the welding guns, and the easily controlled operating procedures.

The system also enables every single spot weld within an ongoing production run to be detected and analysed.

The optional integration of the quality assurance system "QMaster" allows continuous monitoring of the ongoing process. Welding faults can therefore be recognised quickly, thereby reducing costly subsequent quality checks.

Areas of utilisation The DeltaSpot spot welding process is designed for joining two or more sheets of standard coated or uncoated steels and all standard aluminium alloys. It is also ideal for welding different combinations and thicknesses of materials (Usibor, CrNi, etc.).

Main application areas:

- Automobile and component supply industry
- Domestic appliances industry
- Aircraft construction
- Plant, machine and container construction, steel engineering

Scope of supply

System is supplied with:

- Holder main body x 500 + arms, sandwich design
- Medium frequency transformer (1000 Hz) water-cooled
- Holder drive _

_

- Servo-electric holder adjustment _
- Holder control _
- Industrial PC for graphical display of control functions (Fronius Xplorer) _
- DeltaRemote remote control _
- DeltaRemote plus remote control (optional) _
- Quality assurance system (optional) _
- Process tape _
- Electrodes, water-cooled _
- Guide bushes _
- Elastomer springs _

Information for dimensioning the welding plant

CAUTION! Overloading the welding plant may result in damage to property. Check the inverter and the transformer are configured correctly for the respective application.

To prevent components from being overloaded, it is necessary to define the load capacity of the inverter and the transformer in relation to each job.

Load capacity diagrams define the maximum permitted welding current in relation to the duty cycle.

Operating points need to be defined both for the transformer and for the inverter. The lower of the two values should be used for the application.

The duty cycle is calculated as follows:

$$X = \frac{t_1 \times 100}{T}$$

- Duty time, welding time t₁
- Duration Т
- Х On-time

Example:

The welding time is 180 ms and cycle time is 4 s

Information for dimensioning the welding plant (continued)

The on-time is accordingly ED = $t_{_1}$ / T x 100 % = 0.18 s / 4 s x 100 % = 4.5 %

Fig.2 Diagram for dimensioning the welding gun

System components

General remarks Using the medium frequency technique the weight of the welding transformer can be significantly reduced.

Reaching a greater operating frequency with medium frequency welding can result in a significant reduction of the weight and volume of the welding transformer.

Fig. 3 Construction of 1 kHz medium frequency DC welding system

The 50/60 Hz AC mains voltage is converted to DC voltage via a bypass rectifier. The transistorised H-bridge circuit transfers the direct current to the welding transformer at a frequency of 1 kHz. The welding current is rectified in the welding transformer.

Overview of system components

Fig. 4 Overview of system components

- Distributor cooling water supply
 Cooling unit/cooling network
 Robot control

- (4) Holder control
- (5) Power module
- (6) Welding gun

- (a) Cooling water supply
- (b) Buses
- (c) Transformer supply
- (d) Flow monitor signals

Controls and connections

General remarks

NOTE! As a result of firmware updates, you may find that there are functions available on your unit that are not described in these operating instructions or vice versa. Also, certain illustrations may be very slightly different from the actual controls on your machine. However, these controls function in exactly the same way.

WARNING! Operating the equipment incorrectly can cause serious injury and damage. Do not use the functions described here until you have read and completely understood all of the following documents:

- these operating instructions
- all the operating instructions for the system components, especially the safety regulations

DeltaControl controls

(1) –	e •	600D	Delta	Control	Maraul O
					all'
	9				-
	and the second second second				
					-
	M m a				> CE 0
	CUTIN O				occ

Fig. 5 DeltaControl controls

No. Function

(1) Main switch

to switch on the holder control

(2) Operating mode key switch

- Manual: manual operation with DeltaRemote (Plus) remote control
- Bus: Robot welding

Fig. 6 DeltaControl connections

Delta Control connections

(continued)

- X1 Connection of main plug of DeltaSpot welding arm to connect the control lead
- X2 EMERGENCY OFF external for connection to the robot Pin configuration:
 - A + 24 V output (via X5 Pin A, B)
 - B Feedback signal + 24 V
 - C NC 1 of relay K2
 - D Root 1 of relay K2
 - E NO 1 of relay K2
 - F NC 2 of relay K1
 - G Root 2 of relay K1
 - H NO 2 of relay K1
 - J NC 3 of relay K2
 - K Root 3 of relay K2
 - K NO 3 of relay K2

X3 Connection monitor of coolant flow monitor for connecting the Hall installation panel

- Pin configuration:
- A + 24 V Output for flow monitor
- B Flow monitor feedback signal

X4 Connection of digital current source

for the collection of digital signals from the current source Configuration, number of strands, connection cable:

- 1 GND DeltaControl
- 2 24 V Start welding
- 3 Welding current on/off
- 4 + 15 V transformer temperature metre
- 5 Feedback signal from transformer temperature metre
- 6 Relay root Emergency Stop
- 7 Emergency Stop relay NO
- 8 Power source ready
- 9 Reset error
- 10 Power source OK
- 11-17 not assigned

X5 External welding start-up

For external start-up of the welding process without Hold to Run function Pin configuration:

- A + 24 V output for Emergency Stop
- B 24 V Emergency Stop return signal
- C + 24 V output for actuating welding startup
- D 24 V return signal for welding startup actuation

WARNING! Operating the equipment incorrectly can cause serious injury and damage. The design of external operating equipment or Emergency Stop actuators must comply with valid national and international standards.

X6 Analogue power source connection

for the collection of digital signals from the current source Configuration, strand colour, connection cable: Yellow (+) pin secondary voltage, welding transformer

- Green (-) pin secondary voltage, welding transformer
- White (+) pin secondary current meter (Rogowski coil)

Brown (-) pin secondary current meter (Rogowski coil)

Green/yellow Current meter shield

Pink(+) pin welding current command value (0 -10V)

Grey (-) pin welding current command value (0 -10V)

Delta Control connections (continued)	X7 Reserve socket			
	X8 - X 11 reserve			
	CAN1 communication interface to the PC			
	CAN2 communication interface to the DeltaSpot welding gun			
	F1 DeltaControl 24V supply fuse			
	F2 DeltaSpot welding gun 24V supply fuse			
	F3 Bus coupler 24V supply fuse			
	F4 Welding voltage metre fuse			
	F5 Mains power adapter fuse			
	F6 Fuse 48V			

Welding transformer connections

No. Function

- (3) Transformer metering signal connection for connection of welding control
- (4) Cooling water supply connection
- (5) Cooling water return connection
- (6) Transformer primary connection for transformer power supply
- (7) Ground strap
- (8) Connection (-) pin

Welding gun connections

Fig. 8 Connections for cooling water

(9a) Cooling water supply connection to the upper holder arm

- (10 a) Cooling water return connection to the upper holder arm
- (9b) Cooling water supply connection to the lower holder arm
- (10 b) Cooling water return connection to the lower holder arm

Mechanical components

Fig. 9 Mechanical components

(11) Process tape holder to hold unused process tapes

(12) Lock for process tape holder

- (13) Process tape spooling device with drive to hold used process tape
- (14) Process tape guide roller

(15) Electrode shaft

- (16) Process tape guide bush with electrode
- (17) Elastomer spring
- (18) Motor with planetary gear
- (19) Holder drive
- (20) Sheet thickness correction for adjusting to different sheet thicknesses
- (21) Console with transformer and control box
- (22) Process tape brake
- (23) Process tape securing device
 - pevents process tape from unrolling by itself

Mechanical components (continued)

Fig. 10 Holder adjustment

(24) Holder adjustment

to equalise component tolerances or position differences

(25) Holder adjustment drive

Delta Remote control

WARNING! Automatically starting machines can cause serious injury and damage. In addition to these operating instructions, the robot and welding system manufacturer's safety rules must also be observed. For your personal safety, ensure that all protective measures have been taken and will remain in place for the duration of your stay within the working area of the robot.

The DeltaRemote remote control is for manual control of the welding gun. It is used to

- reload process tape
 - replace electrodes

Fig. 11 DeltaRemote control

(26) Process tape forward switch (lower holder arm) for manual feed of lower process tape	
(27) Process tape forward switch (upper holder arm) for manual feed of upper process tape	
(28) Close welding gun button to close welding gun manually	
(29) Open welding gun button to open welding gun manually	

WARNING! Automatically starting machines can cause serious injury and damage. In addition to these operating instructions, the robot and welding system manufacturer's safety rules must also be observed. For your personal safety, ensure that all protective measures have been taken and will remain in place for the duration of your stay within the working area of the robot.

The DeltaRemote control is for manual control of the welding gun. It is used to

- define a reference point after commissioning the system
- reload process tape
- manually spot weld within preset parameters
- reset faults that have arisen

Fig. 12 DeltaRemote Plus remote control

(30) Process tape forward or backwards switch (lower holder arm) for manual feed of process tape

(31) Process tape forward or backwards switch (upper holder arm) for manual feed of process tape

(32) Welding current button

- No Welding: Press RUN (32) key to simulate a spot weld without power.
- Welding: Press RUN (32) key to carry out a spot weld within preset parameters

(33) RUN key

To test a spot weld within actual preset parameters

NOTE! Danger of premature termination of the welding process. The RUN key is equipped with the - HOLD TO RUN - safety feature. Hold button down until the end of the welding process. The RUN button can be released at any time during the welding process to terminate the welding operation immediately (Emergency Stop function).

(34) Move to reference point key

to define a reference point before starting the welding operation

(35) Reference point LED

Is lit as soon as the reference point is defined

DeltaRemote Plus remote control (continued)

(36) Reset key

to reset faults that have arisen

(37) LED default

- lit
- during commissioning if the reference point has not yet been defined
 should faults arise during an ongoing operation

(38) Open and close welding gun switch

to open and close welding gun manually

Before commissioning

General remarks

WARNING! Automatically starting machines can cause serious injury and damage. In addition to these operating instructions, the robot and welding system manufacturer's safety rules must also be observed. For your personal safety, ensure that all protective measures have been taken and will remain in place for the duration of your stay within the working area of the robot.

Utilisation in accordance with "intended purpose" The welding gun is designed exclusively for automated resistance welding. Utilisation for any other purpose, or in any other manner, shall be deemed to be "not in accordance with the intended purpose". The manufacturer shall not be liable for any damage resulting from such improper use.

Utilisation in accordance with the "intended purpose" also comprises

- Following all the instructions in this manual
- performing all stipulated inspection and servicing work.

Machine set-up regulations

WARNING! A machine that topples over or falls from its stand can easily kill someone. Make sure that all components are installed and secured correctly.

 NOTE! The assembly of components of the resistance welding system is the responsibility of the system of fitter. Ensure that

- all connections are connected properly
- all screw fastenings are securely fixed

The manufacturer shall not be liable for any damage caused as a result of incorrect assembly of the welding gun.

Mains connection The equipment is designed to run on the mains voltage specified on the respective rating plates. The required mains supply fuse protection can be found in the "Technical data" section.

If there is no network cable or mains plug on your charger, fit a network cable or plug according to the national standards.

NOTE! Inadequately dimensioned electrical installations can lead to serious damage. The mains lead, and its fuse protection, must be dimensioned in accordance with the local power supply. The technical data shown on the rating plate shall apply.

Guidelines for system cooling

The cooling liquid intake, the purity of the coolant and the differential pressure in the cooling water system should be checked each time you start-up the welding system.

CAUTION! Danger of burns from hot coolant. Check coolant only when cool.

NOTE! Inadequate cooling can cause damage to property. Never operate welding equipment without adequate cooling. The manufacturer will not be held responsible for damage due to inadequate cooling.

Important! We recommend fitting water-cooled components with flow monitors. Flow monitor switch point: Approximately 4.0 l/min (1.0 gal./min)

Recommended	cooling water	quality:
-------------	---------------	----------

pH-value	7 to 8.5
hardness rate D _{max}	10 German degrees 12.5 English degrees 10.5 US degrees 18 French degrees
Chloride	max. 20 mg / l
Nitrate	max. 10 mg / I
Sulphate	max. 100 mg / I
Insoluble substances	max. 250 mg / I

CAUTION! Risk of condensate causing short-circuit. Water-carrying parts should be isolated to prevent condensate from leaking out. Note the information provided by the manufacturer of the cooling system

Transformer PE conductor connection

Fronius medium frequency transformers comply with protection class 1.

NOTE! Additional safety precautions are required for medium frequency transformers in protection class 1 to guard against an isolation failure between the primary and secondary power circuits. National and international standards and guidelines must be complied with

The medium frequency transformer is equipped on delivery with the additional safety feature of a "direct PE conductor connection" as follows:

Detachable PE conductor bridge (MPE) between the secondary circuit of the medium frequency transformer and the transformer's PE conductor connector.

If applying an alternative valid safety precaution:

- 1. Remove PE conductor bridge (MPE)
- 2. Indicate removal of PE conductor bridge (MPE) permanently on the transformer.

Commissioning

General remarks

WARNING! An electric shock can be fatal. If the machine is connected to the mains electricity supply during installation, there is a high risk of very serious injury and damage. Disconnect from the power supply, before carrying out any work on the equipment.

WARNING! Operating the equipment incorrectly can cause serious injury and damage. All connections must be carried out by trained and qualified personnel in compliance with the relevant safety regulations. Note the safety rules in the operating instructions.

Connecting DeltaControl

Fig. 13 Connecting DeltaControl

- (1) DeltaControl
- (2) Industrial PC
- 1. Connect the signal cable (7) to the main plug connector of the DeltaSpot (X1) welding gun
- 2. Connect the analogue signal cable from the power source (3) to the analogue power source connector (X6).
- 3. Connect the digital signal cable from the power source (4) to the digital power source connector (X6).
- 4. Connect the signal cable from the hall installation panel (6) to the coolant flow monitor connector (X3).
- 5. Connect the external Emergency Stop signal cable from the robot (8) to the external Emergency Stop connector (X2).

Connecting DeltaControl (continued) 6. If applicable, connect the external welding start-up connection cable (5) to the external welding start-up connector (X5)

WARNING! Operating the equipment incorrectly can cause serious injury and damage. The design of external operating equipment or Emergency Stop actuators must comply with valid national and international standards.

- 7. Connect to the industrial PC (9) via the CAN1 communication interface
- 8. Connect the welding gun motor controllers (10) via the CAN2 communication interface

Connecting the welding gun

Fig. 14 Connecting the welding gun

- 1. Connect the CAN1 communication interface CAN 2.1 (1) to the PC
- 2. Insert Delta Spot (2) welding gun main connector into connection X1.1
- (3) Service connection socket X23.1

Connecting to cooling water supply

- **NOTE!** Inadequate cooling can cause damage to property. Never operate welding equipment without adequate cooling. The manufacturer will not be held responsible for damage due to inadequate cooling.
- 1. Connect cooling water intake and return to the distributor block on the welding gun
- 2. Connect cooling water supply

Threading up process tape

B

Move to reference point

WARNING! Automatically starting machines can cause serious injury and damage. In addition to these operating instructions, the robot and welding system manufacturer's safety rules must also be observed. For your personal safety, ensure that all protective measures have been taken and will remain in place for the duration of your stay within the working area of the robot.

NOTE! Please note that the integrated Emergency Stop function in the robot control directly influences the DeltaRemote Plus remote control.

In order to be able to determine the position of the holder arm after switching on the system, it is necessary to open the holder arm fully. A sensor detects the reference point and releases the holder for the welding process.

Important! If the position of the holder is not determined after switching on the system, an attempt to start the welding process will result in a fault message (yellow LED lights up). Manual opening and closing of the welding gun will also take place at a reduced speed.

After switching on the system

- 1. Press the reference point key (3)
- 2. Reference point LED (4) lights up and indicates that the welding gun is ready

Fig. 15 Functions on the DeltaRemote Plus remote control.
Sheet thickness correction

Rotate the sheet thickness corrector to adjust the position of the robot holder, so that when closed the position of the drive is within the operating range (1). The closed position depends on the thickness of the sheets being welded.

- (1) Operating range: 10 15° away from top dead centre
- (2) $0 10^\circ: 0^\circ = \text{top dead centre}$
- (3) Sheet thickness correction

Important! If the operating point in the closed position is outside the defined operating range the specified holder force cannot be applied.

Fig. 16 Detail, holder drive in the operating range

Sheet thickness correction

- 1. Weld the point with the necessary sheet thickness
- If the actual operating point (1) is outside the defined operating range, Fronius 2. Xplorer (2) will give a warning signal. The warning is listed in the status options sheet

DeltaSpot	Distance from the	top dead centre			
	Actual:	36,8°			
	Last weld point:	17,91°			
(2)		(1)			
Overview F2 Pro	ogram	F4 Diagnosis			
Operating range The current operating point is outside the defined operating range Correct sheet thickness.					

Fig. 17 Operating point is outside the defined operating range

Sheet thickness correction (continued) 3. Set the operating point by correcting the sheet thickness to within the defined operating range:

- 4. Re-weld the point with the required sheet thickness
- 5. Repeat operating steps 2- 5 until the actual operating range is within the defined operating range.

Distance from the top dead centre	9
Actual:	36,8°
Last weld point:	12,22

Fig. 18 Operating point lies within the defined operating range

DeltaSpot resistance spot welding

General remarks

The most significant feature in the case of DeltaSpot resistance spot welding is the process tape. As well as protecting the electrodes, it offers additional advantages such as the control of the heat application, improvement of efficiency and the ability to bond very different materials.

WARNING! Operating the equipment incorrectly can cause serious injury and damage. Do not use the functions described here until you have read and completely understood all of the following documents:

- these operating instructions
- all the operating instructions for the system components, especially the safety regulations

WARNING! Automatically starting machines can cause serious injury and damage. In addition to these operating instructions, the robot and welding system manufacturer's safety rules must also be observed. For your personal safety, ensure that all protective measures have been taken and will remain in place for the duration of your stay within the working area of the robot.

Process tape consumption Depending on the contamination caused by the material being welded, a section of the process tape can be used several times. For example, a series of 15,000 spot welds can be produced with a 50 m long process tape if each tape section is basically used three times (short tape feed).

If the process tape is advanced by 10 mm after each spot weld, a tape of 50 m long can produce a sequence of approximately 5000 spot welds.

Important! Fronius quality management system "QMaster" tape sections can be used for a single spot weld only.

Holder adjustment The holder adjuster enables the welding gun to be adjusted to fit the workpiece and to compensate for part tolerances.

Holder adjustment activated

If holder adjustment is activated, both holder arms are able to move freely around the axis (1). During welding, both holder arms close simultaneously. In this case, usually one holder arm makes contact with the component first and stops the closing process. The second holder arm continues to close until it also makes contact with the part. After building up the preset force, the welding process begins.

Holder adjustment activated

If the holder adjuster is disabled, the low holder arm is fixed when you switch on the system. During the welding process the electrode force is applied via the upper holder arm, while the lower holder arm functions solely as a support.

Influence of the process tape on the welding process

The use of the process tape results in additional resistances being generated between electrode and tape. The required welding current is far less than with conventional spot welding thanks to the improved efficiency.

The reduced welding current and the type of alloy of the process tape, enable a controlled application of heat and control over the position and form of the weld point.

Resistances with DeltaSpot resistance welding:

Fig.19 Resistances with DeltaSpot spot welding:

R_1, R_2	Material resistances of the electrode
R_3, R_4	Contact resistances of the electrode - process tape
R_{5}, R_{6}	Material resistances of the process tape
R_{7}, R_{8}	Contact resistances of the process tape - workpiece
R_{0}, R_{10}	Material resistances of the workpieces
R ₁₁	Contact resistances, workpiece - workpiece

Weld forms with multi-sheet joins:

Fig. 20 Weld forms with multi-sheet joins

- (1) Weld form when using different materials, material thicknesses and the same process tape alloys
- (2) Weld form when using different materials, material thicknesses and different process tape alloys, for example (a): Process tape with higher resistance.

Holder control / Fronius Xplorer

General remarks

Access to the robot holder controller can be via an existing company network. This enables remote maintenance and central monitoring and documentation of all connected equipment.

Welding parameters can be set using the programme editor in Fronius Xplorer. You can find further details in the Fronius Xplorer operating instructions.

NOTE: As a result of firmware updates, you may find that there are functions available on your device that are not described in these operating instructions or vice versa. Also, certain illustrations may be very slightly different from the actual controls on your machine. However, these controls function in exactly the same way.

Fig.21 DeltaSpot system overview

WARNING! Incorrect details can have serious consequences for equipment. The welding gun must be configured by trained specialist personnel. The manufacturer will not be held responsible for damage due to incorrect settings.

Configuring DeltaSpot welding gun: Access system configuration via the options menu

Ţ

Calibration Server version

System configuration : DeltaSpot				
Paareta	Value	1	Unit	Description
Enabled	enabled			Enables or disables the system.
Name	DettaSpot	N" 2 (Lupo)		Name of the system.
Location (company)	Franius DeltaS	ipat		The company where the system is located.
Location (plant)	Welkt			The plant where the system is located.
Location (hall)	Mach. Ferbgun	9		The hall where the system is located.
Location (cell)	DetsSpot Labo	or		The cell where the system is located.
Guntype	>S00 Lithon 1:8	60		The connected welding gun.
Power source (max current)	800	A		The max output current of the power source.
Power source (current correction factor)	0	3		
Power source (target value before start signal)	enabled			The power source needs a target value before the start signal.
Transformer (max current)	24	N	A	The max, output current of the transformer.
Transformer (transmission ratio)	44	1	n	The input/output transmission ratio of the transformer.
Tape length (top)	40		1	The length of a full tage (lop).
Tape length (katiom)	40		1	The length of a full tage (bottom).
Tape length warning dop)	100		pets	The number of remaining spots on the top tape before a warning is raised.
Tape length warning (bottom)	100		pots	The number of remaining spots on the bottom tape before a warning is raised.
Electrode service life (top)	\$88800	5	pots i	The service life of the top electrode.
Electrode service life (battorn)	500000	9	pets	The service life of the bottom electrode.
Force sensor characteristic curve	-8177			The characteristic curve of the force sensor.
Enable PermaControl	disabled			Enables or disables the PermaControl lubrication unit.
Enable distance drive	disabled			Enables or disables the distance drive function.

Fig. 22 System configuration

Enabled

Activate and deactivate system

Name

Identify DeltaSpot welding gun (identification in Fronius Xplorer)

Location (company), (plant), (hall), (cell)

Define company name and location of welding gun. The names that are entered are stored in Fronius Xplorer as a path (company / plant / hall / cell) and illustrated as a file structure.

Gun type

Define arm geometry, fitted motors, gear ratio etc

Power source (max current)

Define maximum available current of the power source

Power source (current correction factor)

The reference current correction factor can be defined more accurately

Power source (target value before start signal)

This signal will send a short current pulse to activate the power source required to start the welding process.

Transformer (max current)

Define the maximum available current of the installed welding transformer

Transformer (transmission ratio)

Define the transmission ratio of the welding transformer

Tape length (top), (bottom)

Define the length of the process tape used

Tape length warning (top), (bottom)

Define a number of points before the end of the process tape at which a warning should be given

Electrode service life (top), (bottom)

Define the service life of the electrode. At a specified number of spot welds a service message is given (change electrode)

Force sensor characteristic curve

Define the characteristic curve for the force sensor

Enable distance drive

Define unit for external position specification (internal or millimetres)

Calculate maximum welding current:

The maximum available welding current is calculated from the product of the maximum current of the power source "power source (max current)" and a transmission ratio of the welding transformer "transformer (transmission ratio)". If the maximum calculated welding current is greater than the maximum admissible current of the welding transformer, the welding current is automatically limited to the maximum admissible current of the welding transformer.

Example: maximum power source current: 800 A Transformer ratio: 1:44 maximum welding transformer current: 24 kA

Maximum welding current: 0.8 kA * 44 = 35.2 kA

Because the maximum admissible current of the welding transformer is less than the calculated maximum welding current, the maximum welding current is limited to 24 kA.

Calibrating welding guns

Important! The welding gun is fully calibrated on delivery. Calibration is necessary only after a corresponding warning or fault message.

WARNING! Incorrect details can have serious consequences for equipment. The welding gun must be configured by trained specialist personnel. The manufacturer will not be held responsible for damage due to incorrect settings.

Configuring DeltaSpot welding gun: Access system configuration via the options menu

System configuration	
	Position limit
Server version	Force sensor

After selecting the required calibration option, follow the instructions on the screen.

Overview of options

- The overview of options provides information about the current settings of the
- interface
 - program and spot numbers
 - sheet thickness correction in the form of a display of the "distance from the top dead centre"

The overview also gives information about the current consumption values and can be used to reset the counters of the

- process tapes
- electrode service life
- lubrication cycle

Process tape)			
-length (m)	(n) spots		Interface	Manual
Bottom: 62	6200	888	Program number: Spot number:	0 2
Electrode sei	vice life			
Top: Bottom:	3521 3521	889	Distance from the to Actual:	op dead centre 43.27° to TD(
Lubrication	10520	888	Last weld point:	11.6 ° to TDC
Spot counter	2520		-	

Fig. 23 Overview worksheet

Reset counter button

Reset by clicking on the counter button

Program options

🔗 /syster	n name / sy	stem location			X
Overview	Program	F3 Status	F4 Diagnosis F4		
Prog Name	Spot	Profile	Comments	FILTER	
0 Name	1				
1 Name	2				
2 Name	3				
3 Name	e 4				
4 Name	• 5				
5 Name	6				
· _					

Fig. 24 Program option view

Create/edit program button

Click on profile preview (1) in options sheet to select and click on program editor button to open. Shortcut: Enter key

Delete profile button

Click on profile to select and delete by clicking on the button. Shortcut: Delete key

Save profile button to memory

Select required profile and click on button to save to a file

Import profile button

Opens a profile saved to a file

Copy profile button

Select required profile and click on button to save to a temporary file Shortcut: Ctrl + C

Insert profile button

Click on required position to select and click on button to add previously copied profile. Shortcut: Ctrl + V

FILTER

Option to limit program display according to:

- program number
- spot number
- program name
- comment
- material

Status options

In the status view you will find all current warnings and faults related to the welding gun.

O	verview	Program St	tatus Diagnosis
•	0.7	Operating range	The current operating point is outside the defined operating range Correct sheet thickness.
Ø	0.5	Process tape empty (lower)	Y The lower process tape is used up Load new process tape.

System Stop symbol

The operation cannot be continued until the problem has been rectified

Warning symbol

Ignoring a warning can result in the system stopping

Diagnosis view

The diagnosis view gives information about:

- Current statuses of the input and output interfaces
- The connection statuses of the Can devices
- The device status

12	13	P4	15	
Overview Program	m Status	Diagnosis		
N				
Manual I/Os				
Inputs			Outputs	
Signal	Value		Signal	Val
start homing	0		ready	1
start-weiding	0		error	D
resetenars	0		warning	0
main drive open	0		referenced	1
main drive close	a		esternal position control active	D
tape drive top forward	0		actual position	328
tape drive top backward	0			
tape drive bottom forward	0			
tape prive bottom backward	0			
tape length top reset	0			
tape length bottom reset	0			
reset electrode service life top	0			
reset electrode service life boltom	0			
reset lubrication	0			
enable welding current	0			
program number	a			
spot number	0			
enable external position control	0			
target position	a			
Automatic I/Os				
Inputs			Outputs	
Signal	Value		Signal	Va
start homing	0		ready	1
start-weiding	0		error	D
resetenors	0		warning	0
main drive open	0		referenced	

Fig. 26 Diagnosis view - interface

Overview	Program	Status	F4	Diagnosis	15
	H				
Hauptantiids Node state: Status:	0400 0400000000	Bandantrists (stern) Node state: Statue:	0x80 0x800000000		
Ausgleicheantikb Node state: Status:	0x00 0x00000000	Bandanitrisb (unior) Enclosetatus Status	0x80 0x800000000		
Node data	Cw08				

Fig. 27 Diagnosis view - components

Interface button

Activate to display the current statuses of the input and output interfaces.

Components button

Activate to display the current statuses of the Can devices and respective components.

If the figure displayed is not 0 there is a fault. The figure displayed relates to the fault and can assist a customer services to rectify the fault in as short a time as possible.

Creating welding parameters in program editor

Opening program editor

Select program editor by selecting the required profile and clicking on the create/edit profile button. Shortcut: double click on profile

Symbols used in program editor

Save settings Backup parameter settings. Shortcut: Enter key

Reset settings Resets all changes carried out since the last save

Current profile button to create waveform during welding process

3 3 3

Force profile button

to create force profile during welding process

Fig.28 Program editor

- (1) Scrollbar to move the visible area
- (2) Zoom

to enlarge and reduce the screen view

- (3) Force profile (blue) to control the force profile during the welding process
- (4) Current profile (red) to control the waveform during the welding process

Creating current/ force profile

Create force profile or current profile:

1. Opening program editor

2. Select button I for current profile or button F for force profile

- 3. Click on the first spot within the surface diagram and drag to the required position
- 4. Release the mouse button to fix the point of the first spot
- 5. Click again to create a new spot and drag to the required position

Important! The diagram incorporates an object grid (values 0.1 kN or 0.1 kA) which positions newly created spots level with the previously selected spot. This function makes it easier to create an evenly shaped diagram.

- 6. Add more spots as described above
- 7. Confirm settings

Editing current/ force profiles

- Edit force profile or current profile:
 - 1. Open program editor
 - 2. Select button A for current profile/button F for force profile
 - 3. Click on the spots you want to select

Important! To select several spots at the same time, click on escape and drag a box around the required spots. Make sure that the starting point is not located within the selection.

4. Move selected spots or delete from the profile by clicking on the delete button.

Important! After moving the spots is it is possible to restore the original values at any time by clicking on the reset button.

5. Save settings

Exiting programTo exit program editor, click on the close button. Settings are not saved. To save changes, click on save settings button before closing.
Shortcut exit: Esc-button

Program presettings

The programme presetting view is for defining mechanical parameters during the welding operation. It is also possible to enter a program name and additional comments.

Profiles Parameters			
Programmane Name 1			
Endole compensation drive			
Enable tape dive tap	Step Libe 10		
Comments			
			5
6			2
			- C1

Fig.29 Program presettings

Program name

to define a program name

Enable compensation drive

to switch the power source on and off.

Enable tape drive top / bottom

to switch the process tape advance power source on and off.

Step size

To define the process tape advance in millimetres

Comments

to enter additional information about welding parameters, etc.

Signal description

General remarks Signals can be transferred via field bus.

Description of signal inputs

start_homing * Move to reference point

start_welding *
Start welding process

enable_welding_current *

Welding current active (high) / welding current off (low) - trial run

prog_nummer *

Program number from 0 - 255 (spots with different parameter settings)

reset errors

Reset errors

md_open

Manual opening of welding gun

md_close

Manual closing of welding gun

td_t_forward (tapedrive_top_forward) Top tape drive forward

td_t_backward (tapedrive_top_backward)
Top tape drive backward

td_b_forward (tapedrive_bottom_forward) Bottom tape drive forward

td_b_backward (tapedrive_bottom_backward) Bottom tape drive backward

tl_t_reset (tapelength_top_reset) Reset tape length counter for upper process tape

tl_b_reset (tapelength_bottom_reset)

Reset tape length counter for lower process tape

electrode top reset

Reset top electrode service life

electrode bottom reset

Reset bottom electrode service life

Iubrication_reset

Reset lubrication cycle counter

external_position_control (external position specification) high - signal target position active , low - manual control

spot_number

Spot number (different weld positions with the same parameter settings in the program) If the spot number = 0 the programme selection is via the programme number If the spot number is not equal to 0 the programme selection is via the spot number

* Signals required for single welding process

Description of signal outputs

ready * HIGH Commands can be revoked LOW Command is carried out

target_position

The target position is specified via a higher-level control (robot)

warning

Warning e.g. process tape running out

error

Fault

referenced

Reference point confirmed

remote control connected

A remote control is connected to the welding gun

external_position_control_active (external position specification) Feedback from input signal, external_position_control

* Signals required for single welding process

Data in process	Input			
image, inputs	Welding gun	Remarks	Field	Activity
	E00	start_homing	-	High
	E01	start_welding	-	High
	E02	reset_errors	-	High
	E03	md_open	-	High
	E04	md_close	-	High
	E05	td_t_forward	-	High
	E06	td_t_backward	-	High
	E07	td_b_forward	-	High
	E08	td b backward	-	High
	E09	tl t reset	_	High
	E10	tl b reset	-	High
	E11	electrode top reset	-	High
	E12	electrode bottom reset	-	High
	E13	lubrication_reset	-	High
	E14	enable_welding_current	-	High
	E15	external_position_control	-	High
		Program number	0 - 255	
	E16 - E23	Reserve		
	E24 - E31	- Low byte		
		Spot number	0 - XX	
	E32 - E39	- High byte		
	E40 - E47	- Low byte		
		Target position	0 - XX	
	E48 - E55	- High byte		
	E56 - E63	- Low byte		

Data in process image, outputs

Input			
Welding gun	Remarks	Field	Activity
A00	ready	-	High
A01	Errors	-	High
A02	Warning	-	High
A03	referenced	-	High
A04	remote_control_connected -		High
A05	external_position_control_active	-	High
	Current position	0 - XX	
A16 - A23	- High byte		
A24 - A31	- Low byte		

Signal waveform

Move to reference point

E00 start_homing			
A03 referenced	•		
A00 Ready	k]	
A01 Error	• 		

Start welding with external position specification

External position check

Replace wearing parts

General remarks

WARNING! Operating the equipment incorrectly can cause serious injury and damage. All connections must be carried out by trained and qualified personnel in compliance with the relevant safety regulations. Note the safety rules in the operating instructions.

Important!Check electrodes for wear and replace if necessary every time a new process tape is fitted

New process tape is loaded through the holder arm and over the electrodes and attached to the spooling device with the adhesive fastener.

Instructions for storing and assembling process tapes To guarantee that the process tapes remain in top quality condition, please note the following recommended environmental conditions for storage:

- Store process tapes only in the original packaging (vacuum packed)
- The temperature at the storage place should not exceed 35° C (95°F)

When assembling a new process tape note the following:

- Do not remove process tapes from the packaging until immediately before use
- Wear oil and grease free gloves
- Dust and dirt free environment
- Do not touch adhesion points

Material	Process tape	Tape material	Heat input (external)	Tape length
Deep drawn s	teel, ungalvanise	d		
Deep drawn s	steel, galvanised			
CrNi				
	PT 2000	copper	low	52 m (174 ft.)
High-strength	and ultra-strong	steel, boron stee	el	
	PT 1205	steel	medium	70 m (230 ft.)
	PT 2000	copper	low	52 m (174 ft.)
	PT 2110	steel	low	52 m (174 ft.)
AI 99	PT 1407	steel	medium	70 m (230 ft.)
AIMg3				
AIMg5				
AIMgSi	PT 1200	steel	medium	70 m (230 ft.)
Steel /	PT 3000*	CrNi	high	52 m (174 ft.)

* aluminium side

Loading new process tape

Û

CAUTION! Risk of injury from springiness of spooled process tape. To avoid injuries caused by the welding wire springing back, hold the end of the wire firmly when feeding it.

CAUTION! Danger of injury from sharp edged process tape . Wear safety gauntlets when working with process tape

Loading new process tape (continued)

Ņ

CAUTION! Danger of serious damage to property caused by process tape slipping out due to holders and process tape spooling equipment being incorrectly closed. Before commissioning, make sure that all parts are correctly closed and intact. Never use welding gun with defective closures.

Adjusting pro-cess tape brake

Replacing electrodes

- Move robot into the replace position 1. 2.
 - Turn off cooling water supply

CAUTION! Danger of burns from hot coolant. Before changing the electrodes, turn off the coolant supply.

Important! If a large sheet thickness has been set, insert sheet when pushing in the new electrode in order to guarantee that the electrode is held securely.

Adjusting holder arms

Important! After changing an electrode, check that the electrodes are flush with one another. If necessary, adjust the holder arm.

Important! Loosen hex socket head screws (figure 1). Do not remove otherwise you will not be able to carry out the adjustment.

Troubleshooting

General remarks

- **WARNING!** An electric shock can be fatal. Before opening the machine Switch the mains switch to "O"
- Disconnect the machine from the mains
 - Put up an easy-to-understand warning sign to stop anybody inadvertently switching it back on again
 - Using a suitable measuring instrument, check to make sure that electrically charged components (e.g. capacitors) have been discharged

CAUTION! Failure to connect an appropriate earth lead may result in serious injury or damage. The housing screws provide a suitable PE conductor connection for earthing (grounding) the housing and must NOT be replaced by any other screws which do not provide a reliable PE conductor connection.

Troubleshooting

No welding current Inverter OK, control OK

Cause:	Welding lead break

Remedy:	Check leads and contacts
---------	--------------------------

Insufficient welding power

Cause:	Faulty contacts
Remedy:	Check contacts
Cause:	Diode defective
Remedy:	Replace diode or commutator if necessary
Cause:	Transformer feed too weak
Remedy:	Transformer feed must comply with the technical data

Temperature relay triggered

Cause:	Dimensioning error
Remedy:	Dimension transformer correctly for the application
Cause:	Limited coolant flow
Remedy:	Ensure minimum flow according to technical data

Process tape torn or stuck to electrode

Cause:	Incorrect parameter settings (current too high) or incorrect tape type
Remedy:	Correct parameter settings, clean electrodes and rethread process tape, check tape type and replace if necessary
Cause: Remedy:	No coolant flow Ensure coolant flow, clean electrodes and rethread process tape

Description of error signals

error 0.XX		
0.00 = internal con	nmunication	
Cause: Remedy:	Internal communication error Check interface connections	
0.01 = main drive		
Cause: Remedy:	Main motor is not ready Reset error, contact service team if necessary	
0.02 = spot numbe	٦٢	
Cause: Remedy:	The specified spot number is not included in any programme Select program with available spot numbers	
0.03 = power sour	ce	
Cause: Remedy:	There is a power supply error (e.g., no ready signal) Check power source	
0.04 = homing erro	or	
Cause: Remedy:	The reference point could not be found Check the reference point sensor	
0.05 = poslimit ou	t of range	
Cause: Remedy:	The operating range is outside the permitted range. Check whether the correct holder type has been selected in the system configuration.	
0.06 = tape drive t	ор	
Cause: Remedy:	Upper tape motor is not ready Reset error, contact service team if necessary	
0.07 = tape drive b	oottom	
Cause: Remedy:	Lower tape motor is not ready Reset error, contact service team if necessary	
0.08 = tape empty	(top)	
Cause: Remedy:	Upper process tape is empty Loading new process tape	
0.09 = tape empty	(bottom)	
Cause: Remedy:	Lower process tape is empty Loading new process tape	
0.10 = program nu	Imber	
Cause: Remedy:	The program number entered is invalid or the program is defective Check the program number or correct the program.	
0.11 = not reference	ced	
Cause: Remedy:	The drives are not referenced Reference drives	
0.12 = compensation drive		
Cause: Remedy:	Fault on compensating drive Reset error, contact service team if necessary	
0.13 = main drive position limit reached		
Cause: Remedy:	The main drive has exceeded the position limit Correct sheet thickness	
0.14 = flow contro	ller	
Cause: Remedy:	No or limited coolant flow Check flow monitor	

Description of	0.15 = emergen	0.15 = emergency stop			
(continued)	Cause:	Emergency Stop has been actuated			
	Remedy:	Disengage Emergency Stop after rectifying the fault			
	0.16 = main driv	ve position target not reached			
	Cause: Remedy:	The welding gun cannot move the specified electrode distance Contact service team			
	0.17 = invalid d	ms value			
	Cause:	The force sensor is not (yet) calibrated or a fault has occurred during calibration			
	Remedy:	Calibrate force sensor or call the service team			
	0.18 = poslimit	not calibrated			
	Cause:	The position limit (opening angle) of the welding gun is not yet calibrated or a fault has occurred during the calibration.			
	Remedy:	Calibrate position limit			
	0.19 = max forc	e limit reached			
	Cause: Remedy:	The maximum electrode force has been exceeded Reduce electrode force			
	0.22 = current e	0.22 = current exceeds max current limit			
	Cause:	Current profile is greater than the maximum available welding current			
	Remedy:	Correct current profile			
	0.23 = force exc	ceeds max force limit			
	Cause: Remedy:	Current profile is greater than the maximum available electrode force Correct force profile			
	0.24 = invalid o	peration			
	Cause:	The welding gun cannot perform the action because another operation is still active			
	Remedy:	Wait until the operation has finished. Reset command if necessary			
	0.25 = lost start	t welding signal			
	Cause: Remedy:	The welding start signal has been lost during the welding process Set the start signal back to high (reset)			
	0.26 = invalid ta	0.26 = invalid tape length (top)			
	Cause:	The length of the process tape is less than 0. Process tape length not reset after reloading.			
	Remedy:	Reset process tape length			
	0.27 = invalid ta	0.27 = invalid tape length (bottom)			
	Cause:	The length of the process tape is less than 0. Process tape length not reset after reloading.			
	Remedy:	Reset process tape length			
	0.28 =main driv	0.28 =main drive velocity target not reached			
	Cause: Remedy:	Specified speed not reached when holder opening or closing. Contact service team			

Description of error signals (continued)

0.29 = main drive force target not reachedCause:Specified holder force not achievedRemedy:Contact service team0.30 = force sensor not calibratedCause:The force sensor has not yet been calibratedRemedy:Calibrate force sensor

0.31 = diode protection

Cause:	Invalid welding parameters
Remedy:	Reduce welding current or welding time

Description of warning signals	warning 0.XX			
	0.00 = tape length top			
	Cause:	Top process tape running out		
	Remedy:	Reload process tape immediately		
	0.01 = tape ler	ngth bottom warning		
	Cause:	Top process tape running out		
	Remedy:	Reload process tape immediately		
	0.02 = lubricat	0.02 = lubrication		
	Cause:	Lubrication no longer adequate		
	Remedy:	Lubricate holder		
	0.03 = electroo	de service life top		
	Cause:	The electrode is reaching the end of its service life		
	Remedy:	Replace electrode immediately		
	0.04 = electroo	0.04 = electrode service life bottom		
	Cause:	The electrode is reaching the end of its service life		
	Remedy:	Replace electrode immediately		
	0.05 = flow co	0.05 = flow controller		
	Cause:	Insufficient flow of coolant to the electrode Optional test run without		
		power		
	Remedy:	Ensure coolant flow		
	0.07 = working	0.07 = working range		
	Cause:	The operating range is outside the optimum range		
	Remedy:	Correct sheet thickness		
	0.08 = power source			
	Cause:	The power source is not ready Optional test run without power		
	Remedy:	Ensure power source is ready		
	0.09 - 0.27 unused			

Care, maintenance and disposal

General remarks

Under normal operating conditions the welding gun requires only a minimum of care and maintenance. However, it is vital to observe some important points to ensure the welding system remains in a usable condition for many years.

Every start-up	 Check welding gun mains plug and mains cable as well as electrodes and process tape for damage Check coolant Check that all holders and spooling devices for the process tape have been closed correctly and are intact Check the electrodes for wear and replace if necessary Check how much process tape remains and reload if necessary
Every time you change an elec- trode	Check that the electrodes are positioned flush to one another. Adjust holder arm if necessary
Disposal	Carry out disposal in accordance with the valid national and local regulations.

Technical Data

Special voltages For machines designed for special voltages, the technical data on the rating plate applies.

TR-Unit

Mains voltage	500 V
Frequency	1000 Hz
Transformation ratio	44
Idling DC voltage U _{d0}	11.8 V
Continuous direct current I _d	3780 A
Primary current I _{1P}	86 A
Continuous direct current P _d	44.6 kW
Central module at 100 % ED S ₁₀₀ , S _{1P} 50 % ED S ₅₀ 20 % ED S ₂₀	55.0 kVA 77.7 kVA 122.8 kVA
I ₂ max	26.75 A
I ₁ cc	502 A
max. short circuit power Scc U ₁ N x I ₁ cc	214. kVA
max. welding power Smax. 0.8 x Scc	171. kVA
Cooling water quantity	< 4.0 l/min < 1.06 gal/min
Cooling water temperature	max 30° C max.86° F
Differential pressure at 4.0 l/min (1.06 gal/min)	< 0.6 bar
Current measuring coil	150mV / kA +/- 3%
Temperature monitor NC (transformer)	1 x 125° C 1 x 257° F
Temperature monitor NC (commutator)	1 x 80 ° C 1 x 176° F
Protection	IP 00
Insulation class	F
Electrical connection primary secondary	MC adapter for TSB 150 d = 13 mm (0.51 in.)
weight	36.40 lbs.

DeltaSpot wel- ding gun	Nominal output at 50% dc (medium ferquency)	77. kVA
	Welding gun supply voltage	230 V (16 A)
	Holder force	5 kN
	Cooling water quantity / holder arm	< 4.0 l/min < 1.06 gal/min
	Cooling water temperature	max 30° C max.86° F
	Throat depth	500 mm 50.04 cm.
	Holder weight	approx. 100 kg approx. 100.02 kg

D Ersatzteilliste
GB Spare Parts List
F Liste de pièces de rechange
Lista parti di ricambio
E Lista de repuestos
P Lista de peças sobresselentes
NL Onderdelenlijst
N Reservdelsliste
CZ Seznam náhradních dílů

(RUS) Список запасных частей

1/3
DeltaControl 4,300,002

Delta Spot

3/3

FRONIUS INTERNATIONAL GMBH Buxbaumstraße 2, A-4600 Wels, Austria Tel: +43 (0)7242 241-0, Fax: +43 (0)7242 241-3940 E-Mail: sales@fronius.com www.fronius.com

www.fronius.com/addresses Under http://www.fronius.com/addresses you will find all addresses of our Sales & service partners and Locations.